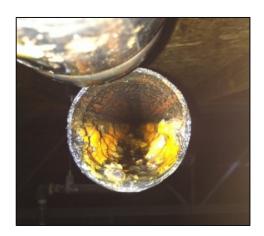


Science of Corrosion and Corrosion Management for Fire Sprinkler Systems

by Engineered Corrosion Solutions, LLC

Setting the standard in corrosion control



Question: Why is corrosion such an important issue?

Answer: Corrosion doesn't just cause leaks in fire sprinkler systems;

It impedes water delivery to the fire!

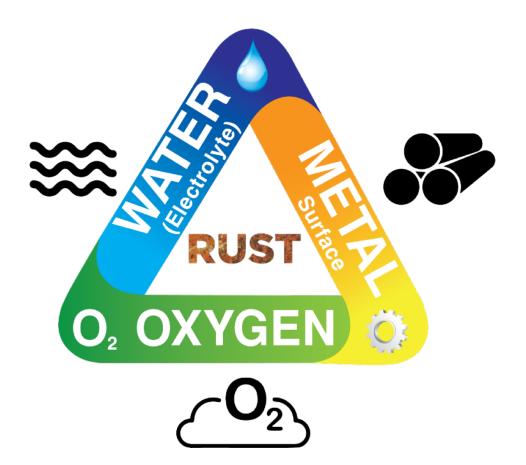
v.19

NFPA July 2017 Research Report "U.S. Experience With Sprinklers"

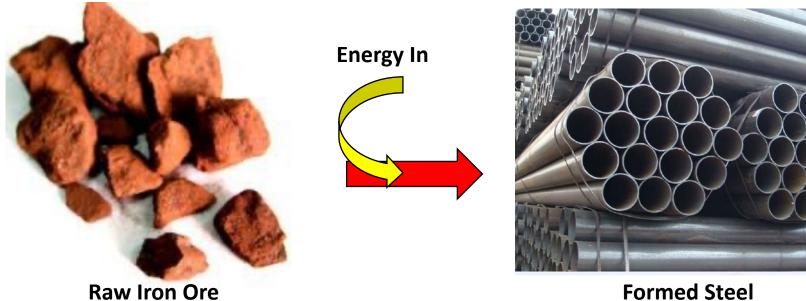
- Sprinklers 96% effective when they operate
- No. 1 cause for failure to control System Shut Off

When Sprinklers Operate But Are Ineffective at Control

- No. 1 cause (51%) Water did not reach fire
- No. 2 cause (30%) Not enough water discharged

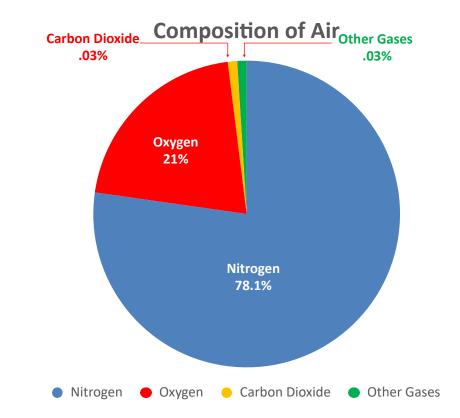


v.19



Oxygen is the Primary Cause of Corrosion in Sprinkler Systems

The Science of Corrosion



Fire Sprinkler Tubing

Steel tubing wants to return to a lower energy state Iron Oxide or CORROSION

The Science of Corrosion

The Corrosive Gases in air are Oxygen (21%) and Carbon Dioxide (0.03%)

Factors that Accelerate Corrosion in Sprinkler Systems

- More oxygen = more corrosion
 - More activity (drain/fill, repairs, remodels)
- Dry pipe fails faster than wet pipe
- Galvanized fails faster than black steel
- Higher temperature increases the rate of corrosion
 - Every 18°F (10°C) increase = Corrosion rate doubled

Fire sprinkler industry in general has several **"systemic"** practices that make corrosion problems **unavoidable**

- Wide spread use of *thin walled* branch lines
- Using *galvanized pipe* on dry/preaction systems
- Gridded design with *elevated branch lines*
- Inspector's test on riser *no longer vents air*
- Lack of *heat annealing* of welded joints and seams
- *Trapped water* in all dry pipe systems
- Code mandated *system testing*

The Most Common Myths Regarding Corrosion

MIC (Microbiologically Influenced Corrosion) is the primary cause of leaks in fire sprinkler systems.

- Bacteria are always present, but oxygen is the primary cause of corrosion in fire sprinkler systems¹.
- No direct correlation between bacteria present in a fire sprinkler system and leaks in the sprinkler system.

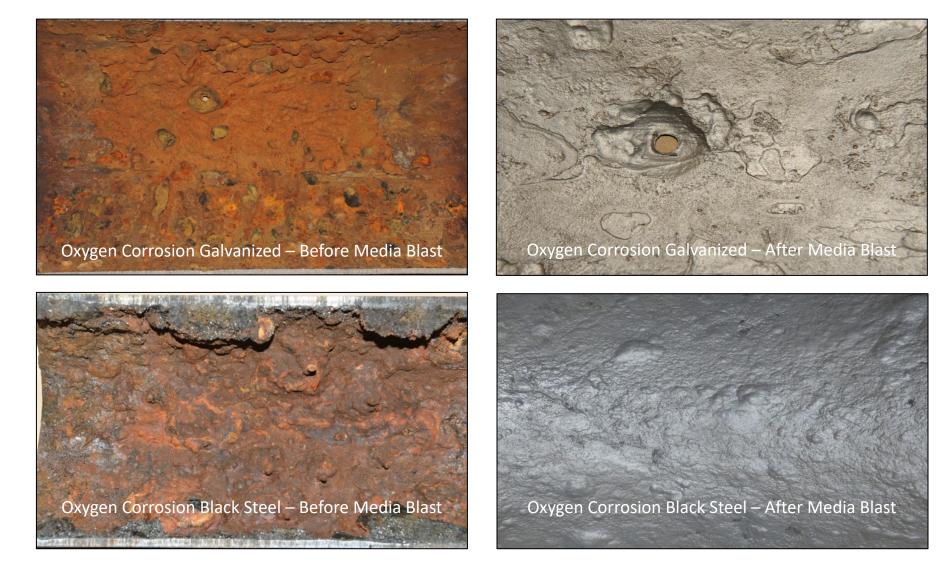
Bad Water causes fire sprinkler system leaks.

• Almost all fire supply water comes from fresh, clean municipal water supplies that are not chemically corrosive.

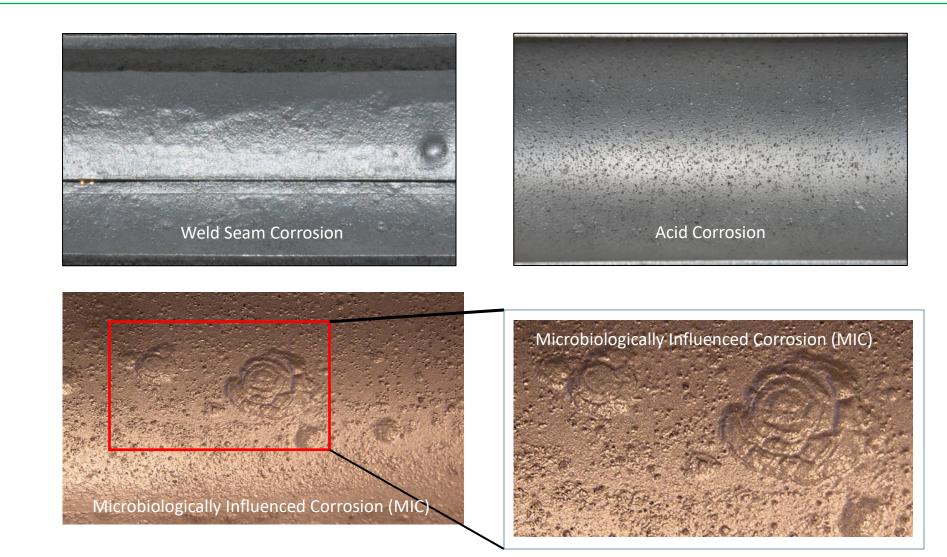
Materially Defective Sprinkler Pipe causes leaks, particularly at the weld seam.

• Pipe materials used today meet or exceed ASTM requirements incorporated in NFPA 13. Root cause analysis very rarely identifies material defect as the cause of failure.

¹ "Corrosion and Corrosion Mitigation in Fire Protection Systems" by Paul Su and David Fuller., FM Global Technical Report- July 2014



Pervasive myths regarding corrosion have hindered the implementation of effective corrosion control strategies in fire sprinkler systems.



Sprinkler System Corrosion

Sprinkler System Corrosion

- 1. Metallurgy too expensive (copper, stainless)
- **2. Plastics** restricted by code (light hazard, residential)
- **3. Coatings** delamination complications (sprinkler plugging)
- 4. Chemical Inhibitors ineffective, incompatible (designed for

flowing systems, degrades plastics and elastomers)

5. Remove the Corrosive Gas – purge the oxygen

	ECS Only	Other Providers
	"Fill and Purge" Venting	Constant Pressure Venting
Supervisory Gas Pressure	Digitally Controlled Fluctuation	Static
Vent Location	Riser Room	Remote (Over Protected Area)
Gas Mixing	Throughout	Poor
Oxygen Removal	Complete	Partial

Case Study – Compressed Air Dryer vs. Nitrogen Generator

Background:

- Cold storage facility
- 1MM+ square foot facility
- Supervisory gas provided by eight (8) Dry Air Pac[™] units
- Annual inspections

Problem:

- Frost and ice plugs were consistently being found during annual inspections
- Dry Air Pac[™] maintenance was cumbersome and costly

Solution:

 Four (4) of the Dry Air Pac[™] units were replaced with a single ECS Nitrogen Generator

Results:

- Zero ice and frost accumulation in subsequent annual inspections
- Project completed in May 2016

Nitrogen Generator Basics and Features

Basics

• Nitrogen generators can serve one or more systems from a single location.

A/3-22138

ÉC

Stand Alone

• Available in wall-mount or stand-alone configurations.

Important Features

- FM Approved (Standard 1035), UL Listed (UL 508A), CE Certification
- HMI Interface with Internet Connectability and Remote Monitoring
 - Bypass Alarm Signal (visual)
 - Leak Monitor Alarm (audible)
- Vent installed at the riser (ECS "Fill and Purge" Breathing Only)
- No nitrogen storage tanks or refrigerated air dryers (ECS Only)
- Standard monitoring points
 - Nitrogen generator loss of power
 - Air bypass mode
 - Nitrogen generator running
 - Nitrogen supply line pressure
 - Excessive runtime/leak monitoring

UL 508A Listed Industrial Control Cabinet

> UL 508A Listed to Canadian Standards

Sprinkler System Comparison

Untreated System WPNI Treated System

Corrosion Monitoring

What is Corrosion Monitoring?

• Implementation of devices used to give real-time corrosion data within Fire Sprinkler Systems

Why is Corrosion Monitoring necessary?

- Early warning to prevent risk
- Validates effectiveness of corrosion management system

Important Features:

- Only **UL Listed (UL 2987) method** for monitoring corrosion in fire sprinkler systems.
- U.S. Pat. No. 9,095,736
- For Dry Pipe, Pre-action and Wet Pipe Systems.
- Complete 360° Coverage of Corrosion Detection.
- Continuous monitoring of corrosion activity inside fire sprinkler system.
- Installed where corrosion is most likely to occur.
 - Low point mains in dry systems.
 - High point branch lines in wet systems.
- Local and remote monitoring.

v.19

Milled section of pipe, results in thin-walled section of 35 mil wall thickness

Remote Test Station included

QUESTIONS?

- Additional Information: <u>www.ecscorrosion.com</u>
- Email Questions: info@ecscorrosion.com
- Contact Direct: (314) 432-1377
- Additional webinars or in-person presentations available upon request

Setting the standard in corrosion control